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1  | INTRODUC TION

It has been estimated that hypertension is the cause of approxi-
mately 13% of all deaths worldwide each year.1 In light of the world's 
population growth and aging demographic, hypertension is a global 
burden, along with other cardiovascular and age-related diseases.2,3

Early intervention with lifestyle modifications and treatment 
of “prehypertension” may reduce the incidence and long-term 
consequences of clinical hypertension.4-7 Recent guidelines low-
ered the recommended thresholds for diagnosing hypertension or 
abnormal “elevated blood pressure (BP)” and the BP goal during 
antihypertensive therapy.8-10 Therefore, the ability to predict an 

individual's risk of developing hypertension would be helpful for 
clinicians. They could then plan and prescribe personalized life-
style modifications or make therapeutic decisions designed to 
prevent or postpone the development of hypertension. There are 
several models available to predict the risk of new-onset hyper-
tension; these have been developed in Western and Asian coun-
tries using traditional statistical methods (eg, Cox regression or 
logistic regression).11,12

Arterial stiffness is increasingly being recognized as making an 
important contribution to increases in systolic BP (SBP) and the 
development of hypertension in general populations, independent 
of traditional hypertension risk factors.13-16 In addition, arterial 
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Abstract
Hypertension is a significant public health issue. The ability to predict the risk of 
developing hypertension could contribute to disease prevention strategies. This 
study used machine learning techniques to develop and validate a new risk predic-
tion model for new-onset hypertension. In Japan, Industrial Safety and Health Law 
requires employers to provide annual health checkups to their employees. We used 
2005-2016 health checkup data from 18 258 individuals, at the time of hypertension 
diagnosis [Year (0)] and in the two previous annual visits [Year (−1) and Year (−2)]. 
Data were entered into models based on machine learning methods (XGBoost and 
ensemble) or traditional statistical methods (logistic regression). Data were randomly 
split into a derivation set (75%, n = 13 694) used for model construction and develop-
ment, and a validation set (25%, n = 4564) used to test performance of the derived 
models. The best predictor in the XGBoost model was systolic blood pressure dur-
ing cardio-ankle vascular index measurement at Year (−1). Area under the receiver 
operator characteristic curve values in the validation cohort were 0.877, 0.881, and 
0.859 for the XGBoost, ensemble, and logistic regression models, respectively. We 
have developed a highly precise prediction model for future hypertension using ma-
chine learning methods in a general normotensive population. This could be used to 
identify at-risk individuals and facilitate earlier non-pharmacological intervention to 
prevent the future development of hypertension.
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stiffness has been associated with increased risk of cardiovascular 
disease, cardiovascular events, and all-cause mortality.17-22

The cardio-ankle vascular index (CAVI) is an indicator of arterial 
stiffness and has been associated with cardiovascular risk factors and 
cardiovascular disease.23,24 CAVI is one of the vascular measures of the 
systemic hemodynamic atherothrombotic syndrome (SHATS), which is 
characterized by a vicious cycle of BP variability and vascular disease 
contributing to cardiovascular events.25,26 In addition, CAVI has been 
shown to predict future development of hypertension independently 
of risk factors in a general normotensive population.27

Artificial intelligence and machine learning (ML) are poised to in-
fluence nearly every aspect of the human condition, and cardiology 
is no exception.28 ML algorithms are typically used without making 
many assumptions about the underlying data.28 This study describes 
the development of a model involving CAVI for the prediction of future 
hypertension development using ML methods in a general population.

2  | METHODS

2.1 | Study subjects

In Japan, Industrial Safety and Health Law requires employers to pro-
vide annual health checkups to their employees. This study included 
individuals who underwent health checkups at the Japan Health 
Promotion Foundation in at least three successive years from 2005 
to 2016, were not being treated with antihypertensive medication, 
and had office BP < 140/90 mm Hg at the two checkup visits prior to 
being diagnosed with hypertension [defined as Year (−2) and Year (−1)]. 
Hypertension was diagnosed at the checkup visit in Year (0).

The study was conducted according to the principles of the 
Declaration of Helsinki. The study protocol was approved by 
an ethics committee of the Jichi Medical University School of 
Medicine (Approval No. RIN A17-HEN 119). It was not necessary 
to obtain informed consent from subjects because identifying in-
formation (eg, names and addresses) was not collected. Subjects 
had the right to opt out of the study. The fact that Jichi Medical 
University was using health checkup data for this study was dis-
closed to the public on the Japan Health Promotion Foundation 
website.

2.2 | Outcomes

The primary end point was new-onset hypertension (defined as 
SBP/diastolic BP [DBP] ≥ 140/90 mm Hg or the initiation of antihy-
pertensive medication with self-reported hypertension) at Year (0).

2.3 | Assessments

Annual health checkup visits included recording of an individual's 
medical history, lifestyle factors, anthropometric measurements, 

and biochemical measurements. Full details have been described 
previously.27

2.4 | Statistical analyses

The prediction model for new-onset hypertension was constructed 
to predict an individual's hypertension risk at Year (0) based on vari-
ables at Year (−1), Year (−2), and changes from Year (−2) to Year (−1). 
The last observation carried forward method was used if a subject did 
not undergo a health checkup at Year (−1) or Year (−2). For missing vari-
ables, mean imputation was used for continuous variables and mode 
imputation was used for categorical variables. Variables with a skewed 
distribution were log-transformed to obtain a normal distribution. The 
data were randomly split into a derivation set (75%, n = 13 694), used 
for model construction and development, and a validation set (25%, 
n = 4564), used to test performance of the derived model (Figure 1).

We used a scalable end-to-end tree boosting system called 
XGBoost model, which is widely used by data scientists to achieve 
state-of-the-art results on many ML challenges.28 We also used 
an ensemble model, which is a supervised learning technique for 
combining multiple weak models to produce a strong model, and 
a logistic regression model (a traditional method). The bagging 

F I G U R E  1   Study flow chart
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method29 was used to combine three models—regularized logis-
tic regression model, random forest model, and XGBoost model. 
The receiver operating characteristic (ROC) curve and validated 
area under the curve (AUC) value were derived to evaluate the 
performance of the derived prediction model. All analyses were 
performed with R version 3.4.1 (The R Foundation for Statistical 
Computing).

3  | RESULTS

3.1 | Subjects

A total of 18 258 subjects were included (mean age 46 years, 
45% men, low prevalence of diabetes and chronic kidney disease) 
(Table 1). The number of cases of new-onset hypertension identified 
was 2672.

3.2 | Predictors of new-onset hypertension

As expected, increasing values of clinic SBP and DBP were impor-
tant predictors of new-onset hypertension, but SBP during CAVI 
measurement in the year before hypertension onset was the most 
important predictor of future new-onset hypertension (Table 2). 
Different BP and BP during CAVI measures comprised the top 
eight predictors of future hypertension. These were followed by 
increasing body mass index (BMI), age, CAVI, waist circumference, 
triglyceride levels, alkaline phosphatase levels, and fasting glucose 
(Table 2).

3.3 | Model performance

Table 3 and Figure 2 show the AUC, precision, recall, and ROC curves 
for the XGBoost, ensemble, and logistic regression models in both the 
derivation and validation sets. The prediction model using XGBoost 
achieved a fitted AUC of 0.976 in the derivation set. This model also 
performed well when applied to the validation set (AUC 0.876). The en-
semble method-based prediction model achieved the best predictive 
performance: AUC of 0.992 and 0.881 in the derivation and validation 
sets, respectively. The prediction model using logistic regression had 

TA B L E  1   Subject demographic and clinical characteristics at 
Year (−2)

Variables
Subjects 
(n = 18 258)

Age, years 46.4 ± 12.1

Men, % 44.6

Body mass index, kg/m2 22.3 ± 3.2

Waist, cm 79.1 ± 7.4

Clinic SBP, mm Hg 118.7 ± 11.2

Clinic DBP, mm Hg 70.0 ± 8.7

CAVI 7.5 ± 0.9

SBP at CAVI measurement, mm Hg 116.1 ± 12.0

DBP at CAVI measurement, mm Hg 72.1 ± 8.9

High-density lipoprotein cholesterol, mg/dL 69.5 ± 18.1

Low-density lipoprotein cholesterol, mg/dL 126.2 ± 26.7

Uric acid, mg/dL 5.0 ± 1.3

Fasting glucose, mg/dL 87.0 ± 11.8

Diabetes mellitus, % 1.6

Chronic kidney disease, % 0.5

Smoking status, %

Non-smoker 71.0

Past smoker 11.8

Current smoker 17.2

Alcohol use, %

0 d/wk 35.0

1-2 d/wk 19.2

3-4 d/wk 7.0

5-6 d/wk 6.1

7 d/wk 11.5

Note: Values are expressed as the mean ± SD or proportion of patients 
(%).
Abbreviations: CAVI, cardio-ankle vascular index; DBP, diastolic blood 
pressure; SBP, systolic blood pressure.

TA B L E  2   The top 20 predictors in the XGBoost model

Rank Variable
Relative 
importance (%)

1 SBP at Year (−1) CAVI measurement 100.0

2 Clinic SBP at Year (−1) 57.3

3 DBP at Year (−1) CAVI measurement 47.8

4 SBP at Year (−2) CAVI measurement 40.0

5 Clinic SBP at Year (−2) 26.4

6 Clinic DBP at Year (−2) 23.3

7 DBP at Year (−2) CAVI measurement 23.2

8 Clinic DBP at Year (−1) 12.4

9 Body mass index at Year (−1) 10.6

10 Age at Year (−2) 10.3

11 Body mass index at Year (−2) 8.5

12 Age at Year (−1) 7.3

13 CAVI at Year (−2) 7.2

14 Clinic SBP by SBP at CAVI measure-
ment at Year (−1)

7.2

15 Waist at Year (−1) 7.0

16 Triglycerides at Year (−2) 6.7

17 Clinic DBP by DBP at CAVI measure-
ment at Year (−1)

6.6

18 CAVI at Year (−1) 6.6

19 ALP at Year (−1) 6.6

20 Fasting glucose at Year (−2) 6.1

Abbreviations: ALP, alkaline phosphatase; CAVI, cardio-ankle vascular 
index; DBP, diastolic blood pressure; SBP, systolic blood pressure.
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the lowest predictive performance of all three models: AUC of 0.855 
and 0.859 in the derivation and validation sets, respectively.

4  | DISCUSSION

We used ML to develop a highly precise prediction model for future 
hypertension in a general population. The performance of the en-
semble model for new-onset hypertension was better than that of 
the XGBoost and logistic regression models.

Traditional statistical models, such as logistic regression or Cox 
regression models, require a number of important assumptions to 

TA B L E  3   Prediction results

Model AUC
Precision 
(PPV)

Recall (True 
positive rate)

XGBoost Derivation 0.976 0.944 0.667

Validation 0.877 0.601 0.317

Ensemble Derivation 0.992 0.976 0.670

Validation 0.881 0.635 0.253

Logistic Derivation 0.855 0.604 0.265

Validation 0.859 0.638 0.290

Abbreviations: AUC, area under the curve; PPV, positive predictive 
value.

F I G U R E  2   Receiver operating 
characteristic curves for each model: (A) 
XGBoost model; (B) ensemble model; and 
(C) logistic regression model
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be met (eg independence of observations and no multicollinearity 
among variables).28 In contrast, ML algorithms typically make fewer 
assumptions about the underlying data.28 This results in algorithms 
that are generally more accurate for prediction and classification.28 
Although our prediction model based on logistic regression per-
formed well in both the derivation and validation sets (AUC 0.855 
and 0.859, respectively), its performance was below those of models 
generated using ML methods.

In this study, BP during CAVI measurement and clinic BP at 
health checkups in the year or two prior to hypertension diagnosis 
were the top eight predictors of new-onset hypertension. Although 
sitting clinic BP is traditionally used to diagnose hypertension, we 
found that SBP at CAVI measurement in the supine position at Year 
(−1) was the strongest predictor of future hypertension. This sug-
gests that assessment of BP in different settings is important to 
allow precise prediction of new-onset hypertension. Based on the 
findings of this study, BP measurement in the supine position at rest 
may be more useful for predicting future hypertension compared 
with BP measurement in the sitting position.

The ML-based analysis was able to incorporate all BP measures 
into the same model. In contrast, the traditional regression model 
could not enter the sitting and supine BP measures with high col-
linearity into the same model. Many previous prediction models in-
cluded age and BMI12 because these have been strongly associated 
with new-onset hypertension. Age and BMI were also important 
predictors of hypertension in our model, after BP measurements. 
CAVI, which has been directly associated with new-onset hyper-
tension,27 was another important predictor in our model. Obesity-
related metabolic risk factors, such as glucose and triglycerides, 
were lower ranked but significant predictors of hypertension in 
the top 20 predictors in the XGBoost model. Thus, both meta-
bolic and vascular components predict the future development of 
hypertension.

Ye et al30 used a ML algorithm (XGBoost) to construct and 
prospectively validated a risk prediction model for future 1-year 
risk of incident essential hypertension using electronic health re-
cord-derived data from more than 1.5 million people. The model 
achieved predictive accuracy of 0.917 and 0.870 in retrospective 
and prospective (validation) cohorts, respectively. Similar predictive 
performance values from our prediction model using the XGBoost 
were achieved in our study (0.976 and 0.876, respectively, in the 
derivation and validation sets). This shows that our model based on 
variables at 2 years was better than the previous model based on 
variables at 1 year.

The strengths of this study are its sample size, and the uniform 
and standardized approach to data collection. However, there were 
also several limitations, largely due to the characteristics of the pop-
ulation, and the methods used to measure the study parameters. We 
only measured clinic BP, which is unable to identify masked hyper-
tension and white-coat hypertension. In addition, we developed the 
prediction model using only health checkup data for two successive 
years. Finally, the findings are only applicable to Japanese patients. 
Therefore, our model needs to be validated in other populations.
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